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Basic Concepts 

 String Variables 

 In strongly typed languages (e.g., Java), String 

Variables are variables in the program with a string 

type. 

               str  in  String str; 

 In weakly typed languages (e.g., PHP), String 

Variables are variables that may be assigned a 

string value. 

               $str in $str = “abc”; 
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Basic Concepts 

• String Constants 

    A sequence of characters within a pair of double 

quotation 

• String operations 

 String operations are library functions that takes 

several string variables as inputs and output a string 

variable (i.e., String.length() is usually not 

considered a string operation) 

 
String 1 

String n 

… String 

Operation 
Output String 
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Basic Concepts 

 Common string operations 

 Concatenation 

    x = a + b; 

 Replace 

    x = a.replace (“a”, “b”); 

 Substring 

    x = a.substring(3,5); 

 Tokenize 

    x = a.nextToken(); 

 … 
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Basic String Analysis 

 Purpose 

    Approximately estimate the possible values of a 

certain string variable in a program 

 Hot Spot 

   A hot spot is a certain occurrence O of a certain 

string variable v in the source code, the possible 

values of the string variable v  at the occurrence O 

require to be estimated.   
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01 String str = “abc” 

02 if(x>5){ 

03     str = str + “cd” 

04 } 

05 System.out.println(str)   <- Hot Spot 

Possible value of variable str at 05: “abc”, “abccd” 

 String variable with finite possible values 

 

Basic String Analysis 
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Basic String Analysis 

 String variable with infinite possible values 

 01 String str = “|” 

02 while(x<readNumber()){ 

03     str = str + “a”+”|”; 

04      x++; 

05 } 

06 System.out.println(str)   <- Hot Spot 

Possible value of variable str at 06: “|”, “|a|”, “|a|a|”… 
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Techniques 

 How to deal with infinite possible values? 

 Using formal languages to represent the set of 

possible values 

 Two options 

 Automaton (Regular Grammar) Based String Analysis 

 CFG Based String Analysis 
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Automaton Based String Analysis 

 Use an automaton M to represent the 

possible values of a hot spot 

 The set of strings that the automaton M 

accepts is a super set of the possible values 

of a hot spot 

 Proposed by Christensen et al. from 

University of Aarhus, Denmark in 2003 
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Automaton Based String Analysis 

 Steps 

 Extract String Flow Graph from the source code of 

the need-to-analyze program 

 Transform the String Flow Graph to a Context Free 

Grammar G with string operations 

 Calculate the automaton approximation Linear 

Grammar of G 

 Use automaton transformations to represent string 

operations, and construct automaton M for the linear 

grammar 
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Running Example 
public class Tricky{ 

    static String bar (int k, String op) { 

        if (k==0) return ""; 

        return op+bar(k-1,op)+“]”; 

    } 

    static String foo (int n) { 

        String b = “”; 

        for (int i=0; i<n; i++) b = b + “(”; 

        String s = bar(n-1,"*"); 

        return b + s.replace(']',')'); 

    } 

    public static void main (String args[]) { 

        String hot = foo(Integer.parseInt(args[0])); 

    } 

} 
Hot Spot 

Output: 

 

 n     n-1   n-1 

 

((…(**…*))…) 
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Extracting String Flow Graph 

 Transform the source code to SSA form 

   Static Single Assignment form of a program make 

sure that each variable is assigned once in the code 

    Example:  

     

x=“ab”; 

x=“cd” + x; 

x=“ab”; 

x1=“cd” + x; 

b = “” 

for(i=1:n) 

b = b + “(”; 

b=“”; 

b1=φ(b, b2); 

b2= b1 + ”(”; 15 



Extracting String Flow Graph 

 Extracting String Flow Graph graph from SSA 

Form F 

   Rules: 

   A string variable in F → A node in graph 

   A string assignment in F → An edge in graph 

   A string operation in F → An operation in 

graph 
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String Flow Graph of the Running 

Example 

X1(hot)

Concat

X2(b1)

X3(b)

X4(b2)

Concat

“”

“(”

X5(s)
Replace(],))

X6(Return

@bar)

“”

Concat

“*”

Concat

“]”
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Transform String Flow Graph to Context 

Free Grammar with operations 

 Rules: 

 A node in graph → A Non-Terminal in Grammar G 

 An edge in graph → A production in Grammar G 

 A concat operation in graph → A concatenation at the 

right hand side of a production 

 Other operations in graph → An operation at the right 

hand side of a production 

 The node for hot spot in graph → The start Non-

Terminal of Grammar G 
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Context Free Grammar with 

operations of the running example 

 Non-Terminal set: {X1, X2, X3, X4, X5, X6} 

 Terminal set: {*, (, ], )} 

 Start Non-Terminal: X1 

 Productions: 

X1→X2X5.replace(],))    X2 →X3 | X4 

X3 →    X4 →X2(     X5 →X6     

X6 → | *X6] 
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Normalize the grammar 

X1→X2X6 

X2 → X11|X2X7 

X7 → ( 

X6 → X5.replace(],)) 

X5 → X11|X8X10 

X8 →X9X5 

X9 →* 

X10 →] 

X11 → 

X1→X2X5.replace(],))     

X2 →X3 | X4 

X3 →     

X4 →X2(      

X5 →X6     

X6 → | *X6] 
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Automaton approximation of the 

grammar 

 Analyze cycles in productions 

 X1→X2X6 

X2 → X11|X2X7 

X7 → ( 

X6 → X5.replace(],)) 

X5 → X11|X8X10 

X8 →X9X5 

X9 →* 

X10 →] 

X11 → 

Right generating, can be exactly  

represented by an automaton 

Both left and right generating 

Called non-regular component  

Cannot be exactly  

represented by an automaton 
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Removing non-regular 

components 

 Mohri - Nederhof Algorithm 
Rules: for each non-terminal A in non-regular component M  

Do: 
A -> X   =>  A ->X A' 

A->B     =>  A->B, B'->A' 

A->X Y  =>  A->R A', R->X Y 

A->X B  =>  A->X B, B'->A' 

A->B X  =>  A->B, B'->X A' 

A->B C  =>  A->B, B'->C, C'->A' 

A->reg   =>  A -> R A', R->reg 

B and C represents non-terminals in M 

X and Y represents non-terminals out of M 

R is a newly added non-terminal 
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Regular approximation of the 

running example 

 Non-regular component:{X5, X8} 

X1→X2X6    X2 → X11|X2X7    X7 → ( 

X6 → X5.replace(],)) 

X5 → X11X5' 

X5 → X8 

X8'→ X10X5 

X8 →X9X5 

X5'→X8' 

X9 →* 

X10 →] 

X11 → 

Left generating Now! 
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Dealing with string operations 

 Build an automaton transformation for each string 

operation 

 For example: replace(],)) can be represented by 

replace all the transition labels „]‟ in the input 

automaton to „)‟ 

 Transformations can be automatically built 

according to the parameters of the operation  
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Construct the automaton 
 Building the automaton using the Topological 

sorting algorithm 
 First of all, build automatons for the non-terminals that deduce 

only terminals. If a non-terminal has an automaton built, we call it 

a free non-terminal 

 Then, build automatons for the non-terminals that deduce only 

free non-terminals, and repeat this step 

 If a non-terminal is involved in a left-generating or right-

generating component, use the classical algorithm to convert the 

whole component to an automaton 

 If a non-terminal is an input of a string operation, use the 

transformation of the operation to calculate the output 
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Problems 

 String operations in a cycle 

 How to deal with the case below? 

 

 

 Current technique cannot handle it, use the closure 

of the character set of X5 as the approximation 

X5 → X5. replace(],)) 

X5 → {*, )}* 
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CFG Based String Analysis 

 Context Free Grammar is more expressive 

than Automatons 

 So it is more precise to use CFG to estimate 

the possible values of a hot spot 

 Proposed by Minamide from University of 

Tsukuba, Japan, 2005 
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Similarity & Difference 

 Similarity 

 Transform the source code to SSA form 

 Extract String Flow Graph from the SSA form 

 Transform the String Flow Graph to a CFG with 
operations 

 Difference 

 Do not calculate the regular approximation   

 Use FST (Finite State Transducer) instead of 
automaton transformations to represent string 
operations 
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CFG Based String Analysis 

 Steps 

 Generate the CFG with operations 

 Resolve the string operations in the CFG 

using the CFG-FST intersection algorithm 
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Finite State Transitor 

 Finite State Transducer (FST) is a Finite State 

Automaton with output 

 For each Transition, an FST not only accept a 

character, but also output one or more characters 

 An example: 

S1

S2

start

S3

0/1 1/11

0/0
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FST for string operations 
 Use FSTs to simulate string operations 

 Replace 

Replace(“ab”, “cd”) 

 

 

 Trim 

S1

S2

start

a/

X/X 

(X=Σ-b)

b/cd

X/X 

(X=Σ-a)

S3
/a

S1 S2

start

space/

S3
space/

X/X

 (X=Σ)

X/X

 (X=Σ-space)

space/

space

X/X

 (X=Σ-space)
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FST for string operations 

 Tokenize (explode) 

Transform one string operation to two operations 

 

 

 

FST for getToken                          FST for removeToken 

 

 

S1

S2

start

delim/

X/ 

(X=Σ)

X/X (X=Σ-

delim)

String str = tokens.nextToken() String str1 = str.getToken() 

String str2 = str.removeToken() 

S1

S2

start

delim/

X/X 

(X=Σ)

X/ 

(X=Σ-delim) 32 



FST for string operations 

 Substring 

    substring(1,2) 

 

 

 

S1

start

S2 S3

X/ 

(X=Σ)
X/ 

(X=Σ)

X/X 

(X=Σ)
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CFG-FST intersection 

 Given a CFG G, and a FST T, try to calculate 

a CFG G’ , satisfying that: 

   x ∈ G    T (x) ∈ G’ 

   , in which x is any string, and T (x) is the output of 

T with x as input  
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CFG-FST Intersection Algorithm 

 Transform the CFL to Chomsky Normal Form (the 

right hand sides of all productions contain only 

two non-terminals) e.g., S->ABC => S->DC, D-

>AB 

 For each pair of states in the FST, add an empty 

generating non-terminal set 

S1 S2a/b

{}

{}
{}

{}
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CFG-FST Intersection 

Algorithm 

 Initialize the generating non-terminal set of all pairs 

of states. 

 Rule: If transition (s1,s2) in FST accept character t 

and A -> t in CFG, add A to the generating non-

terminal set of (s1,s2) 

S1 S2a/b
S1 S2a/b

{A}

A->a 

=> 
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Solution of CFL-Reachability 

Problem, cont. 

 For each non-terminal A on each pair of states 

<s1,s2>, if B∈generating-set(s2,sx) ∧  

   C -> AB ∈ Productions, add C to generating-

set(s1,sx) 

 

 

S1 S2

{…,A}

Sx

{…,B}

{…,C}
C->AB 

S1 S2

{…,A}

Sx

{…,B}

{…}

=> 

37 



Solution of CFL-Reachability 

Problem, cont. 

 For each non-terminal A on each pair of states 

<s1,s2>, if B∈generating-set(sx,s1) ∧  

   C -> BA ∈ Productions, add C to generating-

set(sx,s2) 

 Iteratively execute last two steps until no more non-

terminals are added to the generating sets 

 Each time add a non-terminal to a generating set, 

output the production used 

 The output productions are the intersection of FST 

and CFG 
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An Example 

S1

S2

S3

a/c b/c

b/b

S->PQ

P->aPa | b

Q->Qb | b

The FST: 

The CFG Grammar: The Normalized Grammar: 

S->PQ

A->a

B->b

P->RA | b

R->AP

Q->QB | b
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An Example, cont. 

S1

S2

S3

a/c b/c

b/b

{B,P,Q}

{B,P,Q}

{A}

S->PQ

A->a

B->b

P->RA | b

R->AP

Q->QB | b

S1

S2

S3

a/c b/c

b/b

{B,P,Q}

{B,P,Q}

{A}

{R}

S1

S2

S3

a/c b/c

b/b

{B,P,Q}

{B,P,Q}

{A,P}

{R}

S1

S2

S3

a/c b/c

b/b

{B,P, Q}

{B ,P,Q}

{A,P}

{R}

{Q}
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Output productions used 

 When initialize the generating sets, output the 

production with output terminal instead of the 

accepted terminal  

S1 S2a/c

{A}

A12 ->c 

S1 S2a/c

{}

A ->a 
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Output productions used 

 For the non-terminals added later, use the 

rule below: 

V1 V2

{…,A}

Vx

{…,B}

{…,C}

C->AB 

V1 V2

{…,A}

Vx

{…,B}

{…}

=> 

C1x ->A12 B2x 
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Resolve string operations in a 

CFG with operations 

 Resolve the string operations using the 

topological sorting algorithm 

 If the input non-terminals of a string operation Op 

deduce pure CFG,  resolve Op 

 Repeat the above step until there are no string 

operations in the CFG 

 Example: 

X1->X2X3 

X2->X4.replace(*,))   …   op1 

X4->X5X6 

X6->X7.replace([,])   …    op2 

X7->[X7]+ 

input of op1:  

X4->X5X6 

X6->X7.replace([,]) 

X7->[X7]+ 

 

input of op2: 

X7->[X7]+ 

Resolve op2 first, 

Then op1 
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Problems 

 String operations in a deduction cycle 

 How to deal with the case below? 

 

 

 Current technique cannot handle it, use the closure 

of the character set of X7 as the approximation 

X7 → X7. replace([,]) 

X7 → {], +}* 
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String Taint Analysis 

 Purpose 

   The basic string analysis estimates the possible 

values of a hot spot, but it can not determine the 

data source of the hot spot  

   String taint analysis tries to determine the data 

source of a given hot spot 

    The original purpose of string taint analysis is to 

determine whether the value of a hot spot comes 

from user input  
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Running Example 
public class Tricky{ 

    static String bar (int k, String op) { 

        if (k==0) return ""; 

        return op+bar(k-1,op)+”]”; 

    } 

    static String foo (int n) { 

        String b = “”; 

        for (int i=0; i<n; i++) b = b + “(”; 

        String s = bar(n-1,readChar()); 

        return b + s.replace(']',')'); 

    } 

    public static void main (String args[]) { 

        String hot = foo(Integer.parseInt(args[0])); 

    } 

} 
Hot Spot 

Output: 

 

 n     n-1   n-1 

 

((…(**…*))…) 

 

* is the input char 
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Basic Steps 

 Extract a CFG with operations from the source code 

 Add a Boolean taint for each non-terminal and 
terminal in the CFG 

 For each terminal corresponding to a user input 
function (e.g., readInput()), set the its taint to true 

 For each production, propagate the taint value from 
the right hand side to the non-terminal at the left 
hand side  
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Propagating Taints Through FST 

V1 V2

{…,A}

Vx

{…,B}

{…,C}

C(t)->AB 

V1 V2

{…,A}

Vx

{…,B}

{…}

=> 

C1x (t)->A12 B2x 

V1 V2a/b

{A}

A12(t) ->b 

=> 

V1 V2a/b

A(t)->a 
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Generalized String Taint Analysis 

 Traditional string taint analysis handles only 
Boolean values, so it can only differentiate 
two data sources of a hot spot 

 Generalized String Taint Analysis 

 Use a set instead of a Boolean value to represent a 
taint 

 Allow more complex operations among taints of the 
non-terminals/terminals of a production 

 Example: A(t1) → B(t2)C(t3) => t1 = t2 ∪t3 

50 



Outline 
 Basic Concepts 

 Techniques 
 Basic String Analysis 

 String Taint Analysis 

 String Order Analysis 

 Applications 
 Database Applications 

 Web Applications 

 Software Internationalization 

 ... 

51 



String Order Analysis 

 Limitations of basic string analysis and string taint 

analysis 

   With basic string analysis and string taint analysis, we are able to 

know the possible values and data sources of a hot spot, but we 

do not know the order of the data sources appearing in the value 

of a hot spot 

 String order analysis tries to answer questions like 

“Is constant string a always after constant string b 

when they co-appear in hot spot t?” 
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String Order Analysis 

 Example 

 

 

 

 We want to decide whether “abc” is inside a HTML 

tag (i.e., whether “abc” is after “<” and before “>”) 

$a = „abc‟; 

$t = „f<br name=‟; 

echo $a.$t.‟de‟.‟>‟; 
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Flag Propagation Algorithm: 

Basic Idea 

 Given a CFG, identify which terminals / terminal 

parts are inside tags (i.e., between „<‟ and „>‟) 

 

 Basic Solution: 

1. Initialize known places (i.e., the terminals containing „<‟ or „>‟),  

     e.g., T(O)‟f<br name=„(I)          O: outside, I: inside 

2.  Iterate propagating position information (I/O flags) to other 

places in the CFG (via a list of rules) 

3.  End iterations if none of the flags in the CFG changes 

 

 

abcf<br name=de> 
54 



Flag Propagation Algorithm 

 Add a left flag and a right flag to each 
variable in the CFG. A flag may be of one of 
the four values: 

 O: Indicate that the place where the flag stays is outside a tag  

 I: Indicate that the place where the flag stays is inside a tag  

 U: Indicate that the place where the flag stays is unknown 

 C: Indicate that the place where the flag stays may be both 
inside/outside a tag (e.g. $c=„abc‟; echo $c.‟<tag name=„.$c‟>‟;)  

 Initialize the flags of terminals 
 Terminals with „>‟ or „<‟: Initialize with “I” or “O” accordingly 

 Others: initialize with “U” 
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Flag Propagation Algorithm 

 Propagate flags in the CFG using the flag 

operation and four propagating rules 

iteratively 

• The Flag Operation (+) 

     When two flags meet, we use the flag operation to calculate the 

propagation result of the two flags 

 U+U = U O+U = O I+U = I 

 O+O = O I+I = I I+O = C 

 C+* = C 
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Flag Propagation Algorithm 
 Four Propagation Rules 
 Neighboring Rule (for neighboring variables) 

    S->A(R)(L)B 

    e.g.: S->A(O)(U)B => S->A(O)(O)B 

 S->A(U)(O)B => S->A(O)(O)B 

 Transitive Rule (for terminals without „<‟ and „>‟) 

 S->(L)‟abc‟(R) 

 e.g.: S->(O)‟abc‟(U) => S->(O)‟abc‟(O) 

 Left Deducing Rule 

 (L)S->(L)AB 

 e.g.: (U)S->(O)AB => (O)S->(O)AB 

 Right Deducing Rule 

 S(R)->AB(R) 
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Example CFG 

 A‟abc‟ 

 T‟f<br name=„ 

 D‟de‟ 

 E‟>‟ 

 SATDE 

abcf<br name=de> 
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Initialization 

 (U)A(U)(U)‟abc‟ (U) 

 (U)T(U)(O)‟f<br name=„(I) 

 (U)D(U)(U)‟de‟ (U) 

 (U)E(U)(I)‟>‟ (O) 

 (U)S(U)(U)A(U) (U)T(U) (U)D(U) (U)E(U) 

U: unknown 

abcf<br name=de> 
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Propagation 

 (U)A(   )(   )‟abc‟ (   ) 

 (   )T(   )(O)‟f<br name=„(I) 

 (   )D(   )(U)‟de‟ (U) 

 (   )E(   )(I)‟>‟ (O) 

 (U)S(   )(U)A(   ) (   )T(   ) (   )D(   ) (   )E(   ) 

U O U 

U U 

I 

U U U U U U U 

O I 

U O I I O O I O I 

Left Deducing 

Rule 

(L)S(L)AB 
Right Deducing 

Rule 

S(R)AB(R) 
U O 

Neighboring 

Rule 

SA(R)(L)B 

U U I I 

U O U O 
Transitive Rule (for 

terminals without „<‟ 

and „>‟) 

S (L)‟abc‟(R) 

abcf<br name=de> 
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Final CFG with  

Differentiated Terminals 

 (O)A(O)(O)‟abc‟ (O) 

 (O)T(I)(O)‟f<br name=„(I) 

 (I)D(I)(I)‟de‟ (I) 

 (I)E(O)(I)‟>‟ (O) 

 (O)S(O)(O)A(O) (O)T(I) (I)D(I) (I)E(O) 

 
 

abcf<br name=de> 
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Conflict Cases 

 Code 
$a = „abc‟ 

echo $a.‟<‟.$a.‟>‟  

 

 CFG 
()A(O)„abc‟ 

(O)B(I)(O)‟<‟(I) 

(I)C(O)(I)‟>‟(O) 

S(O)A(?)(O)B(I) 

  A(?)(I)C(O) 

 Final Result 
A(C)„abc‟(C) 

B(O)‟<‟(I) 

C(I)‟>‟ (O) 

S(C)A(C) (C)B(C)          

      (C)A(C) (C)C(C) 

Complication: abc is used both inside and outside tags 

 

Solution: C Flag for Conflict: O + I = C; C + O|I|U|C = C  

except for the flags of initialized known places 

abc<abc> 
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Example Code 

$s = ""; 

for($i=0;$i<$n;$i++){ 

$a = "Name:"; 

$b = "StudentName“.$i.”\””; 

$b = “ value="; 

$c = $attr."\"default"; 

$p = $a."<input name=\"“ 

 .$b.$c; 

$p = $p."\">"; 

$s = $s."\n".$p; 

$i++;} 

echo $table; 

Name:<input 

name="StudentName$i" 

value="default"> 

… 

PHP Code: HTML Texts: 
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 Applications 
 Database Applications 

 Web Applications 

 Software Internationalization 

 ... 
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Why database applications?  

 Database software projects depends on SQL 

queries to manipulate the database 

 SQL queries are usually dynamically generated to 

make the program more flexible 

 Dynamically generated SQL queries, an example: 

Connection con = DriverManager.getConnection ("students.db"); 

String q = "SELECT * FROM address"; 

if (id!=0) q = q + “ WHERE studentid=" + id; 

ResultSet rs = con.createStatement().executeQuery(q); 
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Recent important applications 

 Verify the correctness of dynamically 

generated SQL queries 

 Detect SQL injection vulnerability 

 Determine the impact of database schema 

changes 
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Verify the correctness of dynamically 

generated SQL queries 

 Proposed by Christensen et al. in 2003 

 Purpose: 

   Verify whether all the possible values of the 

dynamically generated  SQL queries are legal 

according to the SQL syntax 
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An example 

 Legal dynamically generated SQL queries 

 

 

 Possibly illegal dynamically generated SQL 

queries 

int id = readInt(); 

String query = "SELECT * FROM address"; 

if (id!=0) query = query + “ WHERE studentid=" + id; 

int id = readInt(); 

String query = "SELECT * FROM address"; 

if (id!=0) query = query + “ WHERE studentid=" + id; 

else query = query + “WHERE studentid=" + id; 

missing space!! 68 



Approach 

 Identify all the query execution statements in the 
source code and mark the variables representing a 
query as hot spots 

 Use basic string analysis to estimate the possible 
values of each hot spot t, represented as an 
automaton M(t) 

 Approximate the SQL syntax as a finite state 
automaton MS with 631 states, and calculate its 
complement MS’ 

 For each t, check whether M(t) ∩ MS’ = Φ 
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Evaluation 
Evaluation on 9 programs 

time in seconds 
in Mbs 
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Limitations 

 Sound but incomplete (may have false 

positives) 

 Can find only syntax errors, cannot find run-

time errors (e.g., type inconsistencies) 
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Detect SQL injection vulnerability 

 Proposed by Gary Wassermann and 

Zhendong Su, 2007 

 Purpose 

   Check whether a dynamically generated SQL 

query may involve in a SQL injection 

vulnerability 
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An Example of SQL injection 

 Consider the query below: 
    query = "SELECT * FROM accounts WHERE 

name='“+readName()+"' AND password='“+readPassword(); 

 If input „ OR 'a'='a„, we get: 

   SELECT * FROM accounts WHERE 

    name='badguy' AND password=„ ' OR 'a'='a' 
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Approach 

 Build regular policy for each value field in the SQL 

statement 

 For each query and its corresponding CFL, compute 

the intersection of the CFL and the regular policy 

 If the intersection is not empty and contains 

substrings from un-trusted source (user input), a 

SQL injection is found 
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Evaluation 
Evaluation on 5 real world projects 

Indirect errors: a user-input string goes to the dangerous  

part of a SQL query through the database 

Example: 

String insert = "insert into table values ("+readString()+"," readInt()+")"; 

executeQuery (insert); 

ResultSet rs = executeQuery ("select * from table"); 

String query = "select * from table where id="+rs.getString(0); 
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Limitations 

 Sound but incomplete, may has false 

positives 

 Can not provide test cases for the developer 

to understand the vulnerability 
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Determine the impact of database 

schema changes 

 Proposed by Andy Maule et al., in 2008 

 Purpose: 

   Determine which statements in the source 

code may require fix after a change on the 

database schema (e.g., a change on the 

name of a table/column, adding/removing 

table/columns) 
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Impact of schema change: An 

example 

queryResult = QueryRunner.Run( 

"SELECT Experiments.Name,Experiments.ExperimentId"+ 

" FROM Experiments"+ 

" WHERE Experiments.Date={@ExpDate}", dbParams); 

schema 

Remove this 

column 

78 



Approach 

 Mark all the SQL queries that goes to a SQL query 

execution statement as hot spots 

 For each hot spot, estimate its possible values using 

basic string analysis 

 For the name of each table column in the schema, 

build an automaton like “Σ*nameΣ*”, which 

represents all strings containing the name 

 Intersect the automaton M(t) of each hot spot t and 

of each table column M(c) 

 M(t) ∩ M(c) ≠ Φ => a change on c affects t 
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Evaluation 
Do evaluation on the irPublish Content Management System, which 

consists of 127KLOC C# code 

 

The database include 101 tables and 615 columns 

Schema Changes: 

Predicted Changes vs. 

Real Changes: 
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Limitations 

 Sound and incomplete, with low precision 

because whenever the changed column is 

involved in a statement, it raise a warning 
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Why web applications? 

 Web-based software projects use html text to 

present web pages 

 Html texts are usually dynamically generated to 

make the program more flexible 

 Dynamically generated html texts, an example in 

PHP: 

$x = _Post[Color] 

$content = _Post[content] 

if ($errMsg == "") 

echo ("<p><h2><font color='".$x."‟>".$content. 

"</font></h2><p>\n"); 83 



Recent Important Applications 

 Verify the correctness of dynamically 

generated web pages 

 Detect cross-site-scripting vulnerabilities 
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Verify the correctness of dynamically 

generated web pages 

 Proposed by Minamide in 2005 

 Purpose: 

   Verify whether all the possible values of the 

dynamically generated web page comply with 

the html syntax 
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An example 

 Legal dynamically generated SQL queries 

 

 

 

 Possibly illegal dynamically generated SQL queries 

If $head == “”, the <h1> tag will  

be unclosed due to the missing </h1> 

echo "<html>"; 

echo "<h1>"; 

if($head!="") 

echo $head; 

echo "</h1></html>“; 

echo "<html>"; 

echo "<h1>"; 

if($head!="") 

echo $head.</h1>; 

echo "</html>“; 
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Approach 

 Add a statement to concatenate all the outputs of a 
web page generating unit (e.g., a .php file), and set 
the concatenation result as the hot spot 

 Use basic string analysis to estimate the possible 
values of the hot spot, represented as a CFG G 

 Approximate the HTML syntax as a finite state 
automaton M by limit the recursive depth of the tags, 
and calculate its complement M’ 

 Check whether G ∩M’ = Φ 
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Evaluation 

Program #lines #non-terminals #productions Time (sec) 

webchess 
schoolmate 
faqforge 
phpwims 
timeclock 

2224 
8085 
843 
726 
462 

300 
7985 
180 
82 
656 

450 
9505 
443 
226 
1233 

0.36 
39.92 
0.16 
0.13 
0.15 

Evaluation on 6 programs 

Time to generate  

CFG 

Validation Results 

Max Recursive Depth 

Program Depth Bugs Time (sec) 

webchess 
schoolmate 
faqforge 
phpwims 
timeclock 

9 
17 
10 
9 
14 

1 
14 
30 
7 
11 

123.33 
7580.69 
45.64 
63.93 
145.61 
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Limitations 

 Sound but incomplete (may have false 

positives) 

 Can find only syntax errors, cannot find run-

time errors (e.g., script refer to illegal 

variables) 
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Detect cross-site-scripting 

vulnerabilities 

 Proposed by Gary Wassermann and 

Zhendong Su, 2008 

 Purpose 

   Check whether a dynamically generated web 

page may involve in a cross-site-scripting 

vulnerability 
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Example 

An cross-site-scripting vulnerability: 

   In form.php: <form action=„view.php‟><input id=1 

name=„content‟></form>  

   In view.php:  

    echo “<div></td>Content: ” . _POST(„content‟) 

 

   if we input “<script>badcode</script>” to the „content‟ item of 

form.php, bad code goes to view.php 
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Approach 

 Build regular policy for all the HTML texts that will 

invoke a script interpreter 

 For the CFL of the HTML text, compute the 

intersection of the CFL and the regular policy 

 If the intersection is not empty and contains 

substrings from un-trusted source (user input), a 

XSS vulnerability is found 
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Evaluation 
The 

information 

of subjects 

Result of 

the detection 

Caused by 

user input 

Caused by un-initialized 

variables, which can be 

set by a user when 

export global is true in 

PHP 
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Limitations 

 Can not handle DOM-based cross-site-

scripting vulnerabilities which read malicious 

code from the DOM 

 Can not follow complex data flow such as 

web page visits and dynamic code 
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Outline 
 Basic Concepts 

 Techniques 
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 ... 

 ... 
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Globalization Process 

One-language 

Version 

Internationalized 

Version 

English 

Property 

German 

Property 

Chinese 

Property 

Developer 

I18n 

L10n 

All language specific 

code elements are 

externalized to 

property files 

I18n Conducted for 

• Old software projects 

• New project with no global plan at first 

• Using old components 

I18n 

 Two Steps: 

 Internationalization(I18n) 

 Localization (L10n) 

96 



Example of I18n and L10n 

 Original Code Elements 

 

 

 Externalized Code Elements 

 

 

 Property files 
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Language Specific Code 

Elements 

• Constant Strings 

• Date/Number Formats 

• Currency/Measures 

• Writing Direction 

• Color/Culture related elements 

• … 

 Constant Strings are of the largest number, and some of 

them are very hard to be located. 
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Motivation of our work 

 There are a lot of constant strings 

 We should not translate all of them 

 

 

 

 

 

 It is sometimes hard to decide which string is 

need-to-translate 

Application/ 

Version 

#LOC #Constant 

Strings 

#Need-to-Translate Strings (Not 

externalized in the subsequent version) 

Rtext0.8.6.9 (Core 

Package) 

17k 1252 408(121) 

Risk1.0.7.5 19k 1510 509(55) 

ArtOfIllusion1.1 71k 2889 1221(816) 

Megamek0.29.72 110k 10464 1734(678) 
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Basic Idea 

 We assume that all need-to-translate strings are those 

strings that are sent to the GUI 

 

 String Variables 

/Expressions 
GUI Constant Strings 
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Output API Methods 

 Output API Methods are methods that pass at least one of 
its parameters to the GUI 

 Example 
 

 java.awt.Graphics2D.drawString(java.lang.String, int, int) 
drawString 1 false 0 

 

 Initial Output Strings are the arguments sent to Output API 
Methods 
 

 g.drawString (weaponMessage, 30,20) 
 

 We locate the string using Eclipse API Search Engine 
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Challenges 
 String operations (concatenate, tokenize, substring, etc..) 

 

 

 

 String transmissions: 

 

 

 String Comparisons: 

 

 

 

 

 Trivial Strings: “123”, “ ”, “Risk”, … 

Client GUI 

network Server 

Client GUI 

String1 

String2 
Comparison 

GUI 

String1 

String1:part1 

String1:part2 

GUI 
String1:part1 

String1:part2 
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Experimental subjects 

 RText : Simple Editor 

 Risk : Board Game 

 ArtOfIllusion : Graph Drawing Project 

 Megamek : Big Real Time Strategy Game 

 

 

 

 

Application/Version Starting 

Month 

#Developers #LOC #Files #Constant Strings 

RText 0.8.6.9 11/2003 16 17k 55 1252 

Risk 1.0.7.5 05/2004 4 19k 38 1510 

AOI 1.1 11/2000 2 71k 258 2889 

Megamek 0.29.72 02/2002 33 110k 338 10464 
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Bugs found 

 We found 17 not-externalized need-to-translate 

strings in the latest version of Megamek and 

reported them as report 2085049. The 

developers confirmed and externalized them. 
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Web Applications: Problems 

 Web applications will not only output user-visible 

strings but also tags. 
 $name = 'Xiaoyin Wang'; 

$position = 'Ph.D. Candidate'; 

$part = 'Software Engineering Institute'; 

$part_ref = 'http://www.sei.pku.edu.cn/'; 

$univ = 'Peking University'; 

$univ_ref = 'http://www.pku.edu.cn/'; 

echo '<DIV><FONT size=6><B>'.$name.'</B></FONT>'   

echo '<P>'.$position.'<BR><A href=\"'.$part_ref.'\">' 

    .$part.'</A><BR><A href=\"'.$univ_ref.'\">'.$univ.'</A>' 

Code 

HTML 

Screen 
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User-Visible Constant Strings in 

Web Applications 

 Constant Strings outside Tags 
     echo "and pressed 'refresh' on your browser. 

            In this case, your responses have<br/>\n"; 

     echo "already been saved." 

     echo "</font></center><br /><br />"; 
(from question.php, Lime Survey 0.97) 

 

 Constant Strings in value attribute of input tags 
   if (substr(strtolower($reply_subj), 0, 3) != "re:") 

         $reply_subj = "Re: ".$reply_subj; 

    echo "         <INPUT TYPE=TEXT NAME=passed_subject 

            SIZE=60 VALUE=\"$reply_subj\">"; 
(from compose.php, SquirrelMail 0.2.1) 
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Not-visible Constant Strings in 

Web Applications 

 Constant String inside Tags 

      if ( $t == $timetohighlight) { $c = "red";} else{ 

           $c = "white"; 

       } 

       echo "<td bgcolor=$c>"; 

    (from day.php3, MRBS version 0.6) 
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Challenges 

 Differentiate constant strings inside and outside 

tags  

 Identify constant strings that are parts of certain 

attribute of certain tags, such as “value” attribute 

of <input> tags. 

 

 Easy for static html texts, but difficult dynamic html texts 

 the generated html texts by code can be various and infinite 
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Approach Overview 

PHP  

Code 
String Taint 

Analysis 

Context Free Grammar  

(CFG) Presenting Output 

Flag 

Propagation 

CFG With  

Differentiated  

Terminals 

Input Tag 

Checking 

Output 

Our Approach 

Constant String 

outside Tags:  

abcf<br name=de> 

Constant String in 
value attribute of input 
tags:<input type=text 
value=search> 

Constant 

strings to be 

translated 

109 



Step 1 - String Taint Analysis 

PHP  

Code 
String Taint 

Analysis 

CFG Presenting  

Output 

$a = „abc‟; 

$t = „f<br name=‟; 

echo $a.$t.‟de‟.‟>‟; 

A‟abc‟ 

T‟f<br name=„ 

D‟de‟ E->‟>‟ 

SATDE 

All Possible 

Contents of the 

output HTML 

abcf<br name=de> 

Static detection of SQL injection vulnerabilities, Wassermann and Su PLDI'07 
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Step 2 – Tag Range Analysis 

CFG Presenting  

Output 
Flag 

Propagation 

CFG With  

Differentiated  

Terminals 

A‟abc‟ 

T‟f<br name=„ 

D‟de‟ E->‟>‟ 

SATDE 

A->‟abc‟ 

T->‟f<br name=„ 

D->‟de‟    E->‟>‟ 

S->ATDE 

abcf<br name=de> 
111 



Step 3- Input Tag Checking 

“input”  

inside 

tags 

Finding 

„<‟ before „input‟ 

No „<‟  

„<‟  

Stop 

Determine 

scope 

of input tag 

“type”/”value”  

inside the scope 

of input tags 

Determine 

scope 

of type/value 

attributes 

Terminals 

inside type/value 

attributes 
Output value 

Stop 

visible 

types 

other 

Determinin

g scopes 

Find 

before/after 

terminal <input type=text value=search> <input type=text value=search> <input type=text value=search> <input type=text value=search> 
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Evaluation Subjects 
 Three PHP projects 

 Lime Survey 

 Squirrel 

 Mrbs 

PJ/Ver #LOC #Constant Strings #Need-to-

Translate 

Lime Survey 0.97 11.3K 6493 290 

Squirrel0.2.1 4.0K 2457 184 

MRBS 0.6 1.4K 704 57 

Only a small 

percentage of 

constant strings are 

need-to-translate 

432 externalized by developers at v+1 version 

62 externalized by developers at later versions 

37 manually verified/confirmed by us 
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Evaluation Result 
BS: string taint analysis 

BS+O: string taint analysis + flag propagation 

ALL: string taint analysis + flag propagation + input tag checking 

 

 

 

Flag propagation helps find outside-tag constant strings 

and reduce false positives greatly 

Input tag checking helps find need-to-translate constant 

strings inside input tags and reduce false negatives 
Most need-to-translate constant strings are outside tags Our approach has small false positives and reasonable 

false negatives 
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Found Constant Strings 

Externalized in Later Versions 

 Our approach found 62 constant strings 
(5: Lime Survey, 44: Squirrel Mail, 13: MRBS) 

 not externalized at the internationalization  

 but externalized later 

 Example (smtp.php of Squirrel Mail, externalized 3 years 

later) 
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Thank you! 
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