
String Analysis:

Techniques and

Applications

Lu Zhang

1

Outline
 Basic Concepts

 Techniques
 Basic String Analysis

 String Taint Analysis

 String Order Analysis

 String Constraint Solver

 Applications
 Database Applications

 Web Applications

 Software Internationalization

 ...

2

Outline
 Basic Concepts

 Techniques
 Basic String Analysis

 String Taint Analysis

 String Order Analysis

 String Constraint Solver

 Applications
 Database Applications

 Web Applications

 Software Internationalization

 ...

3

Basic Concepts

 String Variables

 In strongly typed languages (e.g., Java), String

Variables are variables in the program with a string

type.

 str in String str;

 In weakly typed languages (e.g., PHP), String

Variables are variables that may be assigned a

string value.

 $str in $str = “abc”;

4

Basic Concepts

• String Constants

 A sequence of characters within a pair of double

quotation

• String operations

 String operations are library functions that takes

several string variables as inputs and output a string

variable (i.e., String.length() is usually not

considered a string operation)

String 1

String n

… String

Operation
Output String

5

Basic Concepts

 Common string operations

 Concatenation

 x = a + b;

 Replace

 x = a.replace (“a”, “b”);

 Substring

 x = a.substring(3,5);

 Tokenize

 x = a.nextToken();

 …
6

Outline
 Basic Concepts

 Techniques
 Basic String Analysis

 String Taint Analysis

 String Order Analysis

 Applications
 Database Applications

 Web Applications

 Software Internationalization

 ...

7

Basic String Analysis

 Purpose

 Approximately estimate the possible values of a

certain string variable in a program

 Hot Spot

 A hot spot is a certain occurrence O of a certain

string variable v in the source code, the possible

values of the string variable v at the occurrence O

require to be estimated.

8

01 String str = “abc”

02 if(x>5){

03 str = str + “cd”

04 }

05 System.out.println(str) <- Hot Spot

Possible value of variable str at 05: “abc”, “abccd”

 String variable with finite possible values

Basic String Analysis

9

Basic String Analysis

 String variable with infinite possible values

 01 String str = “|”

02 while(x<readNumber()){

03 str = str + “a”+”|”;

04 x++;

05 }

06 System.out.println(str) <- Hot Spot

Possible value of variable str at 06: “|”, “|a|”, “|a|a|”…

10

Techniques

 How to deal with infinite possible values?

 Using formal languages to represent the set of

possible values

 Two options

 Automaton (Regular Grammar) Based String Analysis

 CFG Based String Analysis

11

Automaton Based String Analysis

 Use an automaton M to represent the

possible values of a hot spot

 The set of strings that the automaton M

accepts is a super set of the possible values

of a hot spot

 Proposed by Christensen et al. from

University of Aarhus, Denmark in 2003

12

Automaton Based String Analysis

 Steps

 Extract String Flow Graph from the source code of

the need-to-analyze program

 Transform the String Flow Graph to a Context Free

Grammar G with string operations

 Calculate the automaton approximation Linear

Grammar of G

 Use automaton transformations to represent string

operations, and construct automaton M for the linear

grammar

13

Running Example
public class Tricky{

 static String bar (int k, String op) {

 if (k==0) return "";

 return op+bar(k-1,op)+“]”;

 }

 static String foo (int n) {

 String b = “”;

 for (int i=0; i<n; i++) b = b + “(”;

 String s = bar(n-1,"*");

 return b + s.replace(']',')');

 }

 public static void main (String args[]) {

 String hot = foo(Integer.parseInt(args[0]));

 }

}
Hot Spot

Output:

 n n-1 n-1

((…(**…*))…)

14

Extracting String Flow Graph

 Transform the source code to SSA form

 Static Single Assignment form of a program make

sure that each variable is assigned once in the code

 Example:

x=“ab”;

x=“cd” + x;

x=“ab”;

x1=“cd” + x;

b = “”

for(i=1:n)

b = b + “(”;

b=“”;

b1=φ(b, b2);

b2= b1 + ”(”; 15

Extracting String Flow Graph

 Extracting String Flow Graph graph from SSA

Form F

 Rules:

 A string variable in F → A node in graph

 A string assignment in F → An edge in graph

 A string operation in F → An operation in

graph

16

String Flow Graph of the Running

Example

X1(hot)

Concat

X2(b1)

X3(b)

X4(b2)

Concat

“”

“(”

X5(s)
Replace(],))

X6(Return

@bar)

“”

Concat

“*”

Concat

“]”

17

Transform String Flow Graph to Context

Free Grammar with operations

 Rules:

 A node in graph → A Non-Terminal in Grammar G

 An edge in graph → A production in Grammar G

 A concat operation in graph → A concatenation at the

right hand side of a production

 Other operations in graph → An operation at the right

hand side of a production

 The node for hot spot in graph → The start Non-

Terminal of Grammar G

18

Context Free Grammar with

operations of the running example

 Non-Terminal set: {X1, X2, X3, X4, X5, X6}

 Terminal set: {*, (,],)}

 Start Non-Terminal: X1

 Productions:

X1→X2X5.replace(],)) X2 →X3 | X4

X3 → X4 →X2(X5 →X6

X6 → | *X6]

19

Normalize the grammar

X1→X2X6

X2 → X11|X2X7

X7 → (

X6 → X5.replace(],))

X5 → X11|X8X10

X8 →X9X5

X9 →*

X10 →]

X11 →

X1→X2X5.replace(],))

X2 →X3 | X4

X3 →

X4 →X2(

X5 →X6

X6 → | *X6]

20

Automaton approximation of the

grammar

 Analyze cycles in productions

 X1→X2X6

X2 → X11|X2X7

X7 → (

X6 → X5.replace(],))

X5 → X11|X8X10

X8 →X9X5

X9 →*

X10 →]

X11 →

Right generating, can be exactly

represented by an automaton

Both left and right generating

Called non-regular component

Cannot be exactly

represented by an automaton

21

Removing non-regular

components

 Mohri - Nederhof Algorithm
Rules: for each non-terminal A in non-regular component M

Do:
A -> X => A ->X A'

A->B => A->B, B'->A'

A->X Y => A->R A', R->X Y

A->X B => A->X B, B'->A'

A->B X => A->B, B'->X A'

A->B C => A->B, B'->C, C'->A'

A->reg => A -> R A', R->reg

B and C represents non-terminals in M

X and Y represents non-terminals out of M

R is a newly added non-terminal
22

Regular approximation of the

running example

 Non-regular component:{X5, X8}

X1→X2X6 X2 → X11|X2X7 X7 → (

X6 → X5.replace(],))

X5 → X11X5'

X5 → X8

X8'→ X10X5

X8 →X9X5

X5'→X8'

X9 →*

X10 →]

X11 →

Left generating Now!

23

Dealing with string operations

 Build an automaton transformation for each string

operation

 For example: replace(],)) can be represented by

replace all the transition labels „]‟ in the input

automaton to „)‟

 Transformations can be automatically built

according to the parameters of the operation

24

Construct the automaton
 Building the automaton using the Topological

sorting algorithm
 First of all, build automatons for the non-terminals that deduce

only terminals. If a non-terminal has an automaton built, we call it

a free non-terminal

 Then, build automatons for the non-terminals that deduce only

free non-terminals, and repeat this step

 If a non-terminal is involved in a left-generating or right-

generating component, use the classical algorithm to convert the

whole component to an automaton

 If a non-terminal is an input of a string operation, use the

transformation of the operation to calculate the output

25

Problems

 String operations in a cycle

 How to deal with the case below?

 Current technique cannot handle it, use the closure

of the character set of X5 as the approximation

X5 → X5. replace(],))

X5 → {*,)}*

26

CFG Based String Analysis

 Context Free Grammar is more expressive

than Automatons

 So it is more precise to use CFG to estimate

the possible values of a hot spot

 Proposed by Minamide from University of

Tsukuba, Japan, 2005

27

Similarity & Difference

 Similarity

 Transform the source code to SSA form

 Extract String Flow Graph from the SSA form

 Transform the String Flow Graph to a CFG with
operations

 Difference

 Do not calculate the regular approximation

 Use FST (Finite State Transducer) instead of
automaton transformations to represent string
operations

28

CFG Based String Analysis

 Steps

 Generate the CFG with operations

 Resolve the string operations in the CFG

using the CFG-FST intersection algorithm

29

Finite State Transitor

 Finite State Transducer (FST) is a Finite State

Automaton with output

 For each Transition, an FST not only accept a

character, but also output one or more characters

 An example:

S1

S2

start

S3

0/1 1/11

0/0

30

FST for string operations
 Use FSTs to simulate string operations

 Replace

Replace(“ab”, “cd”)

 Trim

S1

S2

start

a/

X/X

(X=Σ-b)

b/cd

X/X

(X=Σ-a)

S3
/a

S1 S2

start

space/

S3
space/

X/X

 (X=Σ)

X/X

 (X=Σ-space)

space/

space

X/X

 (X=Σ-space)
31

FST for string operations

 Tokenize (explode)

Transform one string operation to two operations

FST for getToken FST for removeToken

S1

S2

start

delim/

X/

(X=Σ)

X/X (X=Σ-

delim)

String str = tokens.nextToken() String str1 = str.getToken()

String str2 = str.removeToken()

S1

S2

start

delim/

X/X

(X=Σ)

X/

(X=Σ-delim) 32

FST for string operations

 Substring

 substring(1,2)

S1

start

S2 S3

X/

(X=Σ)
X/

(X=Σ)

X/X

(X=Σ)

33

CFG-FST intersection

 Given a CFG G, and a FST T, try to calculate

a CFG G’ , satisfying that:

 x ∈ G  T (x) ∈ G’

 , in which x is any string, and T (x) is the output of

T with x as input

34

CFG-FST Intersection Algorithm

 Transform the CFL to Chomsky Normal Form (the

right hand sides of all productions contain only

two non-terminals) e.g., S->ABC => S->DC, D-

>AB

 For each pair of states in the FST, add an empty

generating non-terminal set

S1 S2a/b

{}

{}
{}

{}
35

CFG-FST Intersection

Algorithm

 Initialize the generating non-terminal set of all pairs

of states.

 Rule: If transition (s1,s2) in FST accept character t

and A -> t in CFG, add A to the generating non-

terminal set of (s1,s2)

S1 S2a/b
S1 S2a/b

{A}

A->a

=>

36

Solution of CFL-Reachability

Problem, cont.

 For each non-terminal A on each pair of states

<s1,s2>, if B∈generating-set(s2,sx) ∧

 C -> AB ∈ Productions, add C to generating-

set(s1,sx)

S1 S2

{…,A}

Sx

{…,B}

{…,C}
C->AB

S1 S2

{…,A}

Sx

{…,B}

{…}

=>

37

Solution of CFL-Reachability

Problem, cont.

 For each non-terminal A on each pair of states

<s1,s2>, if B∈generating-set(sx,s1) ∧

 C -> BA ∈ Productions, add C to generating-

set(sx,s2)

 Iteratively execute last two steps until no more non-

terminals are added to the generating sets

 Each time add a non-terminal to a generating set,

output the production used

 The output productions are the intersection of FST

and CFG

38

An Example

S1

S2

S3

a/c b/c

b/b

S->PQ

P->aPa | b

Q->Qb | b

The FST:

The CFG Grammar: The Normalized Grammar:

S->PQ

A->a

B->b

P->RA | b

R->AP

Q->QB | b
39

An Example, cont.

S1

S2

S3

a/c b/c

b/b

{B,P,Q}

{B,P,Q}

{A}

S->PQ

A->a

B->b

P->RA | b

R->AP

Q->QB | b

S1

S2

S3

a/c b/c

b/b

{B,P,Q}

{B,P,Q}

{A}

{R}

S1

S2

S3

a/c b/c

b/b

{B,P,Q}

{B,P,Q}

{A,P}

{R}

S1

S2

S3

a/c b/c

b/b

{B,P, Q}

{B ,P,Q}

{A,P}

{R}

{Q}

40

Output productions used

 When initialize the generating sets, output the

production with output terminal instead of the

accepted terminal

S1 S2a/c

{A}

A12 ->c

S1 S2a/c

{}

A ->a

41

Output productions used

 For the non-terminals added later, use the

rule below:

V1 V2

{…,A}

Vx

{…,B}

{…,C}

C->AB

V1 V2

{…,A}

Vx

{…,B}

{…}

=>

C1x ->A12 B2x

42

Resolve string operations in a

CFG with operations

 Resolve the string operations using the

topological sorting algorithm

 If the input non-terminals of a string operation Op

deduce pure CFG, resolve Op

 Repeat the above step until there are no string

operations in the CFG

 Example:

X1->X2X3

X2->X4.replace(*,)) … op1

X4->X5X6

X6->X7.replace([,]) … op2

X7->[X7]+

input of op1:

X4->X5X6

X6->X7.replace([,])

X7->[X7]+

input of op2:

X7->[X7]+

Resolve op2 first,

Then op1
43

Problems

 String operations in a deduction cycle

 How to deal with the case below?

 Current technique cannot handle it, use the closure

of the character set of X7 as the approximation

X7 → X7. replace([,])

X7 → {], +}*

44

Outline
 Basic Concepts

 Techniques
 Basic String Analysis

 String Taint Analysis

 String Order Analysis

 Applications
 Database Applications

 Web Applications

 Software Internationalization

 ...

45

String Taint Analysis

 Purpose

 The basic string analysis estimates the possible

values of a hot spot, but it can not determine the

data source of the hot spot

 String taint analysis tries to determine the data

source of a given hot spot

 The original purpose of string taint analysis is to

determine whether the value of a hot spot comes

from user input

46

Running Example
public class Tricky{

 static String bar (int k, String op) {

 if (k==0) return "";

 return op+bar(k-1,op)+”]”;

 }

 static String foo (int n) {

 String b = “”;

 for (int i=0; i<n; i++) b = b + “(”;

 String s = bar(n-1,readChar());

 return b + s.replace(']',')');

 }

 public static void main (String args[]) {

 String hot = foo(Integer.parseInt(args[0]));

 }

}
Hot Spot

Output:

 n n-1 n-1

((…(**…*))…)

* is the input char

47

Basic Steps

 Extract a CFG with operations from the source code

 Add a Boolean taint for each non-terminal and
terminal in the CFG

 For each terminal corresponding to a user input
function (e.g., readInput()), set the its taint to true

 For each production, propagate the taint value from
the right hand side to the non-terminal at the left
hand side

48

Propagating Taints Through FST

V1 V2

{…,A}

Vx

{…,B}

{…,C}

C(t)->AB

V1 V2

{…,A}

Vx

{…,B}

{…}

=>

C1x (t)->A12 B2x

V1 V2a/b

{A}

A12(t) ->b

=>

V1 V2a/b

A(t)->a

49

Generalized String Taint Analysis

 Traditional string taint analysis handles only
Boolean values, so it can only differentiate
two data sources of a hot spot

 Generalized String Taint Analysis

 Use a set instead of a Boolean value to represent a
taint

 Allow more complex operations among taints of the
non-terminals/terminals of a production

 Example: A(t1) → B(t2)C(t3) => t1 = t2 ∪t3

50

Outline
 Basic Concepts

 Techniques
 Basic String Analysis

 String Taint Analysis

 String Order Analysis

 Applications
 Database Applications

 Web Applications

 Software Internationalization

 ...

51

String Order Analysis

 Limitations of basic string analysis and string taint

analysis

 With basic string analysis and string taint analysis, we are able to

know the possible values and data sources of a hot spot, but we

do not know the order of the data sources appearing in the value

of a hot spot

 String order analysis tries to answer questions like

“Is constant string a always after constant string b

when they co-appear in hot spot t?”

52

String Order Analysis

 Example

 We want to decide whether “abc” is inside a HTML

tag (i.e., whether “abc” is after “<” and before “>”)

$a = „abc‟;

$t = „f<br name=‟;

echo $a.$t.‟de‟.‟>‟;

53

Flag Propagation Algorithm:

Basic Idea

 Given a CFG, identify which terminals / terminal

parts are inside tags (i.e., between „<‟ and „>‟)

 Basic Solution:

1. Initialize known places (i.e., the terminals containing „<‟ or „>‟),

 e.g., T(O)‟f<br name=„(I) O: outside, I: inside

2. Iterate propagating position information (I/O flags) to other

places in the CFG (via a list of rules)

3. End iterations if none of the flags in the CFG changes

abcf<br name=de>
54

Flag Propagation Algorithm

 Add a left flag and a right flag to each
variable in the CFG. A flag may be of one of
the four values:

 O: Indicate that the place where the flag stays is outside a tag

 I: Indicate that the place where the flag stays is inside a tag

 U: Indicate that the place where the flag stays is unknown

 C: Indicate that the place where the flag stays may be both
inside/outside a tag (e.g. $c=„abc‟; echo $c.‟<tag name=„.$c‟>‟;)

 Initialize the flags of terminals
 Terminals with „>‟ or „<‟: Initialize with “I” or “O” accordingly

 Others: initialize with “U”

55

Flag Propagation Algorithm

 Propagate flags in the CFG using the flag

operation and four propagating rules

iteratively

• The Flag Operation (+)

 When two flags meet, we use the flag operation to calculate the

propagation result of the two flags

 U+U = U O+U = O I+U = I

 O+O = O I+I = I I+O = C

 C+* = C

56

Flag Propagation Algorithm
 Four Propagation Rules
 Neighboring Rule (for neighboring variables)

 S->A(R)(L)B

 e.g.: S->A(O)(U)B => S->A(O)(O)B

 S->A(U)(O)B => S->A(O)(O)B

 Transitive Rule (for terminals without „<‟ and „>‟)

 S->(L)‟abc‟(R)

 e.g.: S->(O)‟abc‟(U) => S->(O)‟abc‟(O)

 Left Deducing Rule

 (L)S->(L)AB

 e.g.: (U)S->(O)AB => (O)S->(O)AB

 Right Deducing Rule

 S(R)->AB(R)

57

Example CFG

 A‟abc‟

 T‟f<br name=„

 D‟de‟

 E‟>‟

 SATDE

abcf<br name=de>
58

Initialization

 (U)A(U)(U)‟abc‟ (U)

 (U)T(U)(O)‟f<br name=„(I)

 (U)D(U)(U)‟de‟ (U)

 (U)E(U)(I)‟>‟ (O)

 (U)S(U)(U)A(U) (U)T(U) (U)D(U) (U)E(U)

U: unknown

abcf<br name=de>
59

Propagation

 (U)A()()‟abc‟ ()

 ()T()(O)‟f<br name=„(I)

 ()D()(U)‟de‟ (U)

 ()E()(I)‟>‟ (O)

 (U)S()(U)A() ()T() ()D() ()E()

U O U

U U

I

U U U U U U U

O I

U O I I O O I O I

Left Deducing

Rule

(L)S(L)AB
Right Deducing

Rule

S(R)AB(R)
U O

Neighboring

Rule

SA(R)(L)B

U U I I

U O U O
Transitive Rule (for

terminals without „<‟

and „>‟)

S (L)‟abc‟(R)

abcf<br name=de>
60

Final CFG with

Differentiated Terminals

 (O)A(O)(O)‟abc‟ (O)

 (O)T(I)(O)‟f<br name=„(I)

 (I)D(I)(I)‟de‟ (I)

 (I)E(O)(I)‟>‟ (O)

 (O)S(O)(O)A(O) (O)T(I) (I)D(I) (I)E(O)

abcf<br name=de>
61

Conflict Cases

 Code
$a = „abc‟

echo $a.‟<‟.$a.‟>‟

 CFG
()A(O)„abc‟

(O)B(I)(O)‟<‟(I)

(I)C(O)(I)‟>‟(O)

S(O)A(?)(O)B(I)

 A(?)(I)C(O)

 Final Result
A(C)„abc‟(C)

B(O)‟<‟(I)

C(I)‟>‟ (O)

S(C)A(C) (C)B(C)

 (C)A(C) (C)C(C)

Complication: abc is used both inside and outside tags

Solution: C Flag for Conflict: O + I = C; C + O|I|U|C = C

except for the flags of initialized known places

abc<abc>

62

Example Code

$s = "";

for($i=0;$i<$n;$i++){

$a = "Name:";

$b = "StudentName“.$i.”\””;

$b = “ value=";

$c = $attr."\"default";

$p = $a."<input name=\"“

 .$b.$c;

$p = $p."\">";

$s = $s."\n".$p;

$i++;}

echo $table;

Name:<input

name="StudentName$i"

value="default">

…

PHP Code: HTML Texts:

63

Outline
 Basic Concepts

 Techniques
 Basic String Analysis

 String Taint Analysis

 String Order Analysis

 Applications
 Database Applications

 Web Applications

 Software Internationalization

 ...

64

Why database applications?

 Database software projects depends on SQL

queries to manipulate the database

 SQL queries are usually dynamically generated to

make the program more flexible

 Dynamically generated SQL queries, an example:

Connection con = DriverManager.getConnection ("students.db");

String q = "SELECT * FROM address";

if (id!=0) q = q + “ WHERE studentid=" + id;

ResultSet rs = con.createStatement().executeQuery(q);
65

Recent important applications

 Verify the correctness of dynamically

generated SQL queries

 Detect SQL injection vulnerability

 Determine the impact of database schema

changes

66

Verify the correctness of dynamically

generated SQL queries

 Proposed by Christensen et al. in 2003

 Purpose:

 Verify whether all the possible values of the

dynamically generated SQL queries are legal

according to the SQL syntax

67

An example

 Legal dynamically generated SQL queries

 Possibly illegal dynamically generated SQL

queries

int id = readInt();

String query = "SELECT * FROM address";

if (id!=0) query = query + “ WHERE studentid=" + id;

int id = readInt();

String query = "SELECT * FROM address";

if (id!=0) query = query + “ WHERE studentid=" + id;

else query = query + “WHERE studentid=" + id;

missing space!! 68

Approach

 Identify all the query execution statements in the
source code and mark the variables representing a
query as hot spots

 Use basic string analysis to estimate the possible
values of each hot spot t, represented as an
automaton M(t)

 Approximate the SQL syntax as a finite state
automaton MS with 631 states, and calculate its
complement MS’

 For each t, check whether M(t) ∩ MS’ = Φ

69

Evaluation
Evaluation on 9 programs

time in seconds
in Mbs

70

Limitations

 Sound but incomplete (may have false

positives)

 Can find only syntax errors, cannot find run-

time errors (e.g., type inconsistencies)

71

Detect SQL injection vulnerability

 Proposed by Gary Wassermann and

Zhendong Su, 2007

 Purpose

 Check whether a dynamically generated SQL

query may involve in a SQL injection

vulnerability

72

An Example of SQL injection

 Consider the query below:
 query = "SELECT * FROM accounts WHERE

name='“+readName()+"' AND password='“+readPassword();

 If input „ OR 'a'='a„, we get:

 SELECT * FROM accounts WHERE

 name='badguy' AND password=„ ' OR 'a'='a'

73

Approach

 Build regular policy for each value field in the SQL

statement

 For each query and its corresponding CFL, compute

the intersection of the CFL and the regular policy

 If the intersection is not empty and contains

substrings from un-trusted source (user input), a

SQL injection is found

74

Evaluation
Evaluation on 5 real world projects

Indirect errors: a user-input string goes to the dangerous

part of a SQL query through the database

Example:

String insert = "insert into table values ("+readString()+"," readInt()+")";

executeQuery (insert);

ResultSet rs = executeQuery ("select * from table");

String query = "select * from table where id="+rs.getString(0);
75

Limitations

 Sound but incomplete, may has false

positives

 Can not provide test cases for the developer

to understand the vulnerability

76

Determine the impact of database

schema changes

 Proposed by Andy Maule et al., in 2008

 Purpose:

 Determine which statements in the source

code may require fix after a change on the

database schema (e.g., a change on the

name of a table/column, adding/removing

table/columns)

77

Impact of schema change: An

example

queryResult = QueryRunner.Run(

"SELECT Experiments.Name,Experiments.ExperimentId"+

" FROM Experiments"+

" WHERE Experiments.Date={@ExpDate}", dbParams);

schema

Remove this

column

78

Approach

 Mark all the SQL queries that goes to a SQL query

execution statement as hot spots

 For each hot spot, estimate its possible values using

basic string analysis

 For the name of each table column in the schema,

build an automaton like “Σ*nameΣ*”, which

represents all strings containing the name

 Intersect the automaton M(t) of each hot spot t and

of each table column M(c)

 M(t) ∩ M(c) ≠ Φ => a change on c affects t

79

Evaluation
Do evaluation on the irPublish Content Management System, which

consists of 127KLOC C# code

The database include 101 tables and 615 columns

Schema Changes:

Predicted Changes vs.

Real Changes:

80

Limitations

 Sound and incomplete, with low precision

because whenever the changed column is

involved in a statement, it raise a warning

81

Outline
 Basic Concepts

 Techniques
 Basic String Analysis

 String Taint Analysis

 String Order Analysis

 Applications
 Database Applications

 Web Applications

 Software Internationalization

 ...

82

Why web applications?

 Web-based software projects use html text to

present web pages

 Html texts are usually dynamically generated to

make the program more flexible

 Dynamically generated html texts, an example in

PHP:

$x = _Post[Color]

$content = _Post[content]

if ($errMsg == "")

echo ("<p><h2>".$content.

"</h2><p>\n"); 83

Recent Important Applications

 Verify the correctness of dynamically

generated web pages

 Detect cross-site-scripting vulnerabilities

84

Verify the correctness of dynamically

generated web pages

 Proposed by Minamide in 2005

 Purpose:

 Verify whether all the possible values of the

dynamically generated web page comply with

the html syntax

85

An example

 Legal dynamically generated SQL queries

 Possibly illegal dynamically generated SQL queries

If $head == “”, the <h1> tag will

be unclosed due to the missing </h1>

echo "<html>";

echo "<h1>";

if($head!="")

echo $head;

echo "</h1></html>“;

echo "<html>";

echo "<h1>";

if($head!="")

echo $head.</h1>;

echo "</html>“;

86

Approach

 Add a statement to concatenate all the outputs of a
web page generating unit (e.g., a .php file), and set
the concatenation result as the hot spot

 Use basic string analysis to estimate the possible
values of the hot spot, represented as a CFG G

 Approximate the HTML syntax as a finite state
automaton M by limit the recursive depth of the tags,
and calculate its complement M’

 Check whether G ∩M’ = Φ

87

Evaluation

Program #lines #non-terminals #productions Time (sec)

webchess
schoolmate
faqforge
phpwims
timeclock

2224
8085
843
726
462

300
7985
180
82
656

450
9505
443
226
1233

0.36
39.92
0.16
0.13
0.15

Evaluation on 6 programs

Time to generate

CFG

Validation Results

Max Recursive Depth

Program Depth Bugs Time (sec)

webchess
schoolmate
faqforge
phpwims
timeclock

9
17
10
9
14

1
14
30
7
11

123.33
7580.69
45.64
63.93
145.61

88

Limitations

 Sound but incomplete (may have false

positives)

 Can find only syntax errors, cannot find run-

time errors (e.g., script refer to illegal

variables)

89

Detect cross-site-scripting

vulnerabilities

 Proposed by Gary Wassermann and

Zhendong Su, 2008

 Purpose

 Check whether a dynamically generated web

page may involve in a cross-site-scripting

vulnerability

90

Example

An cross-site-scripting vulnerability:

 In form.php: <form action=„view.php‟><input id=1

name=„content‟></form>

 In view.php:

 echo “<div></td>Content: ” . _POST(„content‟)

 if we input “<script>badcode</script>” to the „content‟ item of

form.php, bad code goes to view.php

91

Approach

 Build regular policy for all the HTML texts that will

invoke a script interpreter

 For the CFL of the HTML text, compute the

intersection of the CFL and the regular policy

 If the intersection is not empty and contains

substrings from un-trusted source (user input), a

XSS vulnerability is found

92

Evaluation
The

information

of subjects

Result of

the detection

Caused by

user input

Caused by un-initialized

variables, which can be

set by a user when

export global is true in

PHP

93

Limitations

 Can not handle DOM-based cross-site-

scripting vulnerabilities which read malicious

code from the DOM

 Can not follow complex data flow such as

web page visits and dynamic code

94

Outline
 Basic Concepts

 Techniques
 Basic String Analysis

 String Taint Analysis

 String Order Analysis

 Applications
 Database Applications

 Web Applications

 Software Internationalization

 ...

 ...
95

Globalization Process

One-language

Version

Internationalized

Version

English

Property

German

Property

Chinese

Property

Developer

I18n

L10n

All language specific

code elements are

externalized to

property files

I18n Conducted for

• Old software projects

• New project with no global plan at first

• Using old components

I18n

 Two Steps:

 Internationalization(I18n)

 Localization (L10n)

96

Example of I18n and L10n

 Original Code Elements

 Externalized Code Elements

 Property files

97

Language Specific Code

Elements

• Constant Strings

• Date/Number Formats

• Currency/Measures

• Writing Direction

• Color/Culture related elements

• …

 Constant Strings are of the largest number, and some of

them are very hard to be located.

98

Motivation of our work

 There are a lot of constant strings

 We should not translate all of them

 It is sometimes hard to decide which string is

need-to-translate

Application/

Version

#LOC #Constant

Strings

#Need-to-Translate Strings (Not

externalized in the subsequent version)

Rtext0.8.6.9 (Core

Package)

17k 1252 408(121)

Risk1.0.7.5 19k 1510 509(55)

ArtOfIllusion1.1 71k 2889 1221(816)

Megamek0.29.72 110k 10464 1734(678)

99

Basic Idea

 We assume that all need-to-translate strings are those

strings that are sent to the GUI

 String Variables

/Expressions
GUI Constant Strings

100

Output API Methods

 Output API Methods are methods that pass at least one of
its parameters to the GUI

 Example

 java.awt.Graphics2D.drawString(java.lang.String, int, int)
drawString 1 false 0

 Initial Output Strings are the arguments sent to Output API
Methods

 g.drawString (weaponMessage, 30,20)

 We locate the string using Eclipse API Search Engine

101

Challenges
 String operations (concatenate, tokenize, substring, etc..)

 String transmissions:

 String Comparisons:

 Trivial Strings: “123”, “ ”, “Risk”, …

Client GUI

network Server

Client GUI

String1

String2
Comparison

GUI

String1

String1:part1

String1:part2

GUI
String1:part1

String1:part2

102

Experimental subjects

 RText : Simple Editor

 Risk : Board Game

 ArtOfIllusion : Graph Drawing Project

 Megamek : Big Real Time Strategy Game

Application/Version Starting

Month

#Developers #LOC #Files #Constant Strings

RText 0.8.6.9 11/2003 16 17k 55 1252

Risk 1.0.7.5 05/2004 4 19k 38 1510

AOI 1.1 11/2000 2 71k 258 2889

Megamek 0.29.72 02/2002 33 110k 338 10464
103

Bugs found

 We found 17 not-externalized need-to-translate

strings in the latest version of Megamek and

reported them as report 2085049. The

developers confirmed and externalized them.

104

Web Applications: Problems

 Web applications will not only output user-visible

strings but also tags.
 $name = 'Xiaoyin Wang';

$position = 'Ph.D. Candidate';

$part = 'Software Engineering Institute';

$part_ref = 'http://www.sei.pku.edu.cn/';

$univ = 'Peking University';

$univ_ref = 'http://www.pku.edu.cn/';

echo '<DIV>'.$name.''

echo '<P>'.$position.'
'

 .$part.'
'.$univ.''

Code

HTML

Screen

105

User-Visible Constant Strings in

Web Applications

 Constant Strings outside Tags
 echo "and pressed 'refresh' on your browser.

 In this case, your responses have
\n";

 echo "already been saved."

 echo "</center>

";
(from question.php, Lime Survey 0.97)

 Constant Strings in value attribute of input tags
 if (substr(strtolower($reply_subj), 0, 3) != "re:")

 $reply_subj = "Re: ".$reply_subj;

 echo " <INPUT TYPE=TEXT NAME=passed_subject

 SIZE=60 VALUE=\"$reply_subj\">";
(from compose.php, SquirrelMail 0.2.1)

106

Not-visible Constant Strings in

Web Applications

 Constant String inside Tags

 if ($t == $timetohighlight) { $c = "red";} else{

 $c = "white";

 }

 echo "<td bgcolor=$c>";

 (from day.php3, MRBS version 0.6)

107

Challenges

 Differentiate constant strings inside and outside

tags

 Identify constant strings that are parts of certain

attribute of certain tags, such as “value” attribute

of <input> tags.

 Easy for static html texts, but difficult dynamic html texts

 the generated html texts by code can be various and infinite

108

Approach Overview

PHP

Code
String Taint

Analysis

Context Free Grammar

(CFG) Presenting Output

Flag

Propagation

CFG With

Differentiated

Terminals

Input Tag

Checking

Output

Our Approach

Constant String

outside Tags:

abcf<br name=de>

Constant String in
value attribute of input
tags:<input type=text
value=search>

Constant

strings to be

translated

109

Step 1 - String Taint Analysis

PHP

Code
String Taint

Analysis

CFG Presenting

Output

$a = „abc‟;

$t = „f<br name=‟;

echo $a.$t.‟de‟.‟>‟;

A‟abc‟

T‟f<br name=„

D‟de‟ E->‟>‟

SATDE

All Possible

Contents of the

output HTML

abcf<br name=de>

Static detection of SQL injection vulnerabilities, Wassermann and Su PLDI'07

110

Step 2 – Tag Range Analysis

CFG Presenting

Output
Flag

Propagation

CFG With

Differentiated

Terminals

A‟abc‟

T‟f<br name=„

D‟de‟ E->‟>‟

SATDE

A->‟abc‟

T->‟f<br name=„

D->‟de‟ E->‟>‟

S->ATDE

abcf<br name=de>
111

Step 3- Input Tag Checking

“input”

inside

tags

Finding

„<‟ before „input‟

No „<‟

„<‟

Stop

Determine

scope

of input tag

“type”/”value”

inside the scope

of input tags

Determine

scope

of type/value

attributes

Terminals

inside type/value

attributes
Output value

Stop

visible

types

other

Determinin

g scopes

Find

before/after

terminal <input type=text value=search> <input type=text value=search> <input type=text value=search> <input type=text value=search>

112

Evaluation Subjects
 Three PHP projects

 Lime Survey

 Squirrel

 Mrbs

PJ/Ver #LOC #Constant Strings #Need-to-

Translate

Lime Survey 0.97 11.3K 6493 290

Squirrel0.2.1 4.0K 2457 184

MRBS 0.6 1.4K 704 57

Only a small

percentage of

constant strings are

need-to-translate

432 externalized by developers at v+1 version

62 externalized by developers at later versions

37 manually verified/confirmed by us
113

Evaluation Result
BS: string taint analysis

BS+O: string taint analysis + flag propagation

ALL: string taint analysis + flag propagation + input tag checking

Flag propagation helps find outside-tag constant strings

and reduce false positives greatly

Input tag checking helps find need-to-translate constant

strings inside input tags and reduce false negatives
Most need-to-translate constant strings are outside tags Our approach has small false positives and reasonable

false negatives
114

Found Constant Strings

Externalized in Later Versions

 Our approach found 62 constant strings
(5: Lime Survey, 44: Squirrel Mail, 13: MRBS)

 not externalized at the internationalization

 but externalized later

 Example (smtp.php of Squirrel Mail, externalized 3 years

later)

115

Thank you!

116

